DOI: http://dx.doi.org/10.18782/2320-7051.5261

ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 5 (6): 1465-1470 (2017)

<u>Research Article</u>

OPEN 🔂 ACCESS

Studies on Population Dynamics of Major Insect Pests Infesting Chilli (Capsicum annum L.)

Rajput V. S.¹, Prajapati B. G.², Pareek A.^{3*} and Patel P. S.⁴

Department of Agril. Entomology, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385 506 Dist: Banaskantha, Gujarat, India *Corresponding Author E-mail: pareek.ento@gmail.com Received: 20.07.2017 | Revised: 29.08.2017 | Accepted: 4.09.2017

ABSTRACT

A Field experiment was conducted to study the population dynamics of major insect pests infesting chilli (Capsicum annum L.). Results revealed that whitefly (Bemisia tabaci Genn.), leafhopper (Amrasca biguttula biguttula Ishida), and aphid (Aphis gossypii Glover) commenced the activity during the last week of July. The aphid reached its peak during the first week of September (8.36 aphid/ 3 leaves,) while the peak activity of whitefly and leafhopper was recorded during the second week of September (7.12 whitefly/ 3 leaves and 6.44 leafhopper/ 3 leaves), respectively. The incidence of thrips (Scirtothrips dorsali Hood) was commenced during the second week of August and reached the peak during the third week of September (9.50 thrips/ 3 leaves). Yellow mite (Polyphagotarsonemus latus Banks) appeared on the crop during the third week of August and reached its peak level during the third week of September (6.54 mite/ 3 leaves). Further, the incidence of fruit borer, Halicoverpa armigera Hubner was commenced during the third week of September and recorded at peak in the third week of October (2.88 larvae/ plant). The correlation study showed that thrips exhibited highly significant negative correlation with evening relative humidity and significant positive correlation with maximum temperature. The leafhopper population showed positive and significant correlation with minimum temperature. None of weather parameters showed significant impact on whitefly and aphid population. The correlation between yellow mite and maximum temperature was significant and positive, while, evening relative humidity had significant negative correlation. The fruit borer showed highly significant and negative correlation with morning and evening relative humidity while, maximum temperature and sunshine hours were significant with positive correlation.

Key words: Chilli, Incidence, Population, Peak, Seasonal, Correlation, Significant

INTRODUCTION

Chilli is an important vegetable and condiment crop in India. The two cultivated species (Capsicum annum L. and Capsicum frutescens L.; family Solanaceae) are raised in the tropics and sub-tropics with a temperature range of 20-25 °C considered as ideal. The medicinal value of chilli is much realized because of its vitamin 'C' and capsaicin (C_{18} H₂₇ O₃ N). It is widely used throughout the tropics as major ingredient of curry powder in the culinary production.

Cite this article: Rajput, V.S., Prajapati, B.G., Pareek, A. and Patel, P.S., Studies on Population Dynamics of Major Insect Pests Infesting Chilli (Capsicum annum L.), Int. J. Pure App. Biosci. 5(6): 1465-1470 (2017). doi: http://dx.doi.org/10.18782/2320-7051.5261

Besides essential alkaloid, red colouring matter, which is non-pungent. India is the largest consumer and exporter of chilli in the world with a production of 3292 MT from an area of 238 thousand ha and productivity 10 MT per ha during 2015^1 . The major chilli states are Andhra growing Pradesh. Maharashtra, Karnataka, Tamil Nadu and Rajasthan. In Gujarat, it is cultivated in an area of 6500 ha with the production of 6600 MT^2 . The major chilli growing districts of Gujarat include Anand, Banaskantha, Kheda. Navsari, Patan, Mehsana and Vadodara, Surat.A number of factors responsible for low yield include adverse climate, poor quality seeds, diseases, insect and mites which significantly affect both the quality as well as production of chilli. The yield losses range between 50 to 90 per cent due to insect pests of chilli^{9,15}. Thrips (Scirthothrips dorsalis Hood), whiteflies (Bemisia tabaci Genn), aphids (Aphis gossypii Glover) and yellow mites (Polyphagotarsonemus latus Banks) are the important sucking pests which contributed to reduction in the crop yield⁷. The damage due to mites and thrips together had been estimated to the tune of 50 per cent 8 .

MATERIALS AND METHODS

Field experiment was conducted with GCh 1, a local cultivar of chilli during *kharif* 2016-17 at Horticulture Instructional Farm of Chamanbhai Patel College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University Sardarkrushinagar,. The plot gross plot size was 20 m x 20 m while, net plot size was 18 m x 18 m with 60 cm x 60 cm row to row and plant to plant spacing.

(i) Sucking pests

The incidence of insect pests was recorded from randomly selected and tagged fifty plants of chilli. Observations were recorded on these tagged plants after 15 days of transplanting at weekly interval during morning between 7.00 AM to 8.00 AM. The chilli crop was kept insecticide free throughout the crop season. Number of sucking pests *viz.*, leafhopper, thrips, whitefly and aphid were counted separately from three leaves one each from top, middle and bottom region per plant with the help of magnifying lens.

(ii) Yellow mite

Weekly observations on the population of *P*. *latus* were recorded starting one month after transplanting. Three leaves representing top, middle and bottom canopy were plucked randomly from each of the fifty plants and one cm^2 area of each selected leaf from each plant were observed with the help of 10x eye glass.

(iii) Fruit borer

The observations of number of fruit borer larvae per plant were recorded from these fifty randomly selected plants. Observations were recorded during early morning hrs at weekly interval.

Weather parameters

Weekly meteorological data on temperature, relative humidity, sunshine hours, wind velocity and rainfall were obtained from the Agro-meteorological observatory, S. D. Agricultural University, Sardarkrushinagar. The data was utilized to work out simple correlation co-efficient between pest population and various abiotic factors.

Statistical analysis

Data of different insect pests thus, obtained were subjected to statistical analysis.

RESULTS AND DISCUSSION

Thrips (Scirtothrips dorsalis Hood)

The incidence of thrips was first noticed during the second week of August (34th SMW) with a mean population of 2.12 thrips per 3 leaves (Table 1). Then, its population gradually increased and reached its peak level (9.5 thrips /3 leaves) in the third week of September (39th SMW). The second peak was noticed during the third week of October (43rd SMW) with a mean population of 6.50 thrips per 3 leaves. The thrips population started declining and reached low level (2.20 thrips /3 leaves at the end of crop period during kharif, 2016-17. The results obtained in the present investigation are in close agreement with the earlier reported by Bhade et al.⁴ and Panicker¹⁶.

Whitefly (*Bemisia tabcai* Genn.)

Whitefly first appeared in the last week of July (32^{rd} SMW) with 1.38 numbers per 3 leaves. Its population increased gradually and reached the peak (7.12 whiteflies/ 3 leaves) in the second week of September (38th SMW). Later

the population decreased gradually and reached at low level (1.94 whitefly/ 3 leaves) during the fourth week of November (Table 1). The similar results obtained by Meena *et al.*¹⁴, Bharadia and Patel³.

Leafhopper (Amrasca biguttula biguttula Ishida)

The incidence of leafhopper was first recorded during 4th week after transplanting. The population reached its peak (6.44 leafhoppers /3 leaves) during the second week of September (38th SMW). Thereafter, the population decreased gradually and lower number of leafhoppers (1.12 leafhopper / 3 leaves) were observed during fourth week of November (48th SMW) (Table 1). The results obtained in the present investigations are in close agreement with the earlier reports of Gambhiri and Kumar⁶ who observed higher incidence of leafhopper during the month of August and September.

Aphid (Aphis gossypii Glover)

The infestation of aphids appeared three weeks after transplanting and reached at its maximum level (8.36 aphids/ 3 leaves) during the first week of September (37^{th} SMW). Thereafter, population was steadily declined and finally disappeared during the third week of November (47^{th} SMW) (Table 1). Earlier to this, Meena *et al.*¹⁴ (reported that the aphid population peaked in the first week of September (9.0 aphid/ 3 leaves) and second week of September (9.3 aphid/ 3 leaves).

Yellow mite (*Polyphagotarsonemus latus* Banks)

The vellow mite population commenced the activity third weeks after transplanting i.e. third week of August. The peak population (6.54 yellow mites /3 leaves) was observed during the third week of September (39th The population was recorded SMW). minimum (1.42 yellow mite / 3 leaves) at harvest of the crop *i.e.*, the fourth week of November (48 SMW) (Table 1). Similar results were obtained by Meena et al.¹⁴ who reported that the population density of mite was observed to its peak in the second week of September (9.2 and 9.0 mite/ 3 leaves).

Fruit borer (*Helicoverpa armigera* Hubner) The fruit borer, *H. armigera* appeared in the crop during the third week of September (39th

SMW) with the larval population recorded to be 0.76 larva per plant (Table 1). The population increased gradually and reached its peak of 2.88 larvae per plant during 43th SMW and thereafter, started declining. In early reports Roopa and Kumar¹⁷ Nadaf and Kulkarni¹³ reported the peak incidence of fruit borer during the first fortnight of November.

Correlation between population of major insect pests and weather parameters Thrips (*Scirtothrips dorsalis* Hood)

Among the different weather parameters studied (Table 2), evening relative humidity $(r = -0.61^{**})$ exhibited highly significant negative correlation with thrips population, while maximum temperature ($r= 0.56^*$) had significant positive correlation with thrips. Minimum temperature, wind velocity and sunshine hours showed non- significant positive correlation with its population, whereas, morning relative humidity and rainfall exhibited negative but non-significant association with the thrips. The similar results obtained Meena et al.¹⁴ and Bhede et al.⁴ reported that the negative correlation with evening relative humidity while positive correlation with bright sunshine of thrips population.

Whitefly (*Bemisia tabcai* Genn.)

The results presented in table 2 revealed that none of weather parameter had significant impact on whitefly population. Minimum temperature, maximum temperature, morning relative humidity, wind velocity and sunshine hours had non-significant positive association, whereas, evening relative humidity and rainfall showed non- significant negative association with the incidence of whitefly. Earlier, Bharadia and Patel³, Yadav *et al.*¹⁹ reported high temperature with significant positive correlation while relative humidity and rainfall were negatively correlated with whitefly population.

Leafhopper (*Amrasca biguttula biguttula* Ishida)

The leafhopper population had positive and significant correlation with minimum temperature (r=0.48*). Though, maximum temperature, morning relative humidity, wind velocity and sunshine hours had positive correlation but was non-significant. The

leafhopper population had negative and nonsignificant correlation with evening relative humidity, and rainfall (Table 4). The present findings are confirmed with workers of Gambhiri and Kumar⁶, Mahmood et al.¹¹ who the maximum and observed minimum temperature with positive and significant While, relative humidity correlation. and rainfall were found negative and nonsignifacant with leafhopper population.

Aphid (Aphis gossypii Glover)

The results revealed (Table 2) that none of the weather parameter showed significant effect on aphid population. However, maximum temperature, minimum temperature, wind velocity, sunshine hours displayed nonsignificant positive correlation, whereas, morning relative humidity, evening relative humidity, and rainfall showed non- significant negative correlation with aphid population. In early reports, Debaraj and Singh⁵, Roopa and Kumar¹⁷ revealed that the aphid population exhibited a negative correlation with maximum temperature, minimum temperature and sunshine hours.

Yellow mite (*Polyphagotarsonemus latus* Banks)

The results presented in table 2 revealed that maximum temperature $(r=0.48^*)$ had

significant positive correlation, while evening relative humidity (r= -0.54*) had significant negative correlation with yellow mite population. The correlation of minimum temperature, morning relative humidity, wind velocity and sunshine was positive and non-significant. Hoever, rainfall showed non-significant and negative correlation with the population of yellow mite. Similar observation was also recorded by Lingeri *et al.*¹⁰ and Montasser *et al.*¹².

Fruit borer (*Helicoverpa armigera* Hubner)

The results presented in table 2 indicated that morning relative humidity (r=-0.68**) and evening relative humidity (r= -0.66**) had highly significant and negative correlation with fruit borer population, while maximum temperature (r=0.55*), sunshine hours (r=0.48*) showed significant positive correlation with fruit borer population. Further, minimum temperature, wind velocity and rainfall showed non-significant negative correlation with fruit borer population. In early reports, Nadaf and Kulkarni¹³, Singh et al.¹⁸ observed rainfall and relative humidity with negative correlation while, temperature with positive correlation with pest activity.

Month and Week	SMW		Fruit borer				
		Thrips	Whitefly	Leafhopper	Aphid	Yellow mite	larvae/plant
July							
IV	32	0.00	1.38	1.28	0.40	0.00	0.0
August							
Ι	33	0.00	1.50	1.68	1.22	0.00	0.0
II	34	2.12	2.74	2.06	2.66	0.00	0.0
III	35	3.22	3.00	2.38	2.54	1.72	0.0
IV	36	3.54	3.60	2.66	2.54	3.24	0.0
September							
Ι	37	4.78	4.00	3.82	8.36	4.30	0.0
II	38	6.32	7.12	6.44	8.18	5.20	0.0
III	39	9.50	7.0	6.22	7.20	6.54	0.76
IV	40	8.16	6.40	5.62	6.90	5.90	1.08
October							
Ι	41	5.22	6.12	5.44	6.36	4.30	1.88
Π	42	6.32	5.78	4.72	5.84	4.12	2.34
III	43	6.50	3.50	2.68	5.30	3.82	2.88
IV	44	5.86	2.88	2.50	4.20	3.52	2.46
November							
I	45	4.70	2.18	2.40	2.94	2.64	2.32
II	46	3.24	2.28	1.96	2.86	2.30	1.18
III	47	2.50	2.14	1.56	0.00	1.98	1.04
IV	48	2.20	1.94	1.12	0.00	1.42	0.00

Table 1: Mean population of insect pests infesting chilli during kharif 2016-17

SMW- Standard Meteorological Week

 Table 2: Correlation between population of major insect pests and weather parameters during kharif

 2016-17

	Weather parameters										
Insect pests	Temperature (°C)		Rela Humidi	ttive ity (%)	Wind velocity	Rainfall	Bright Sunshine				
	Max.	Min.	Morning	Evening	(km/hr)	(mm)	(Hrs/day)				
Thrips	0.56*	0.13	-0.20	-0.61**	0.02	-0.31	0.46				
Whitefly	0.34	0.46	0.19	-0.26	0.21	-0.08	0.14				
Leafhopper	0.32	0.48*	0.18	-0.23	0.27	-0.10	0.13				
Aphid	0.39	0.43	-0.06	-0.30	0.37	-0.21	0.24				
Yellow mite	0.48*	0.18	0.06	-0.54*	0.01	-0.22	0.40				
Fruitborer	0.55*	-0.27	-0.68**	-0.66**	-0.30	-0.34	0.48*				

* Significant at 5 per cent level (r=0.48) **Significant at 1 per cent level (r=0.60)

REFERENCES

- 1. National Horticulture Board Indian Horticulture Database (2016).
- Anonymous Indian Horticulture Database, Ministry of Agriculture, Govt. of India.p-288 (2013).
- Bharadia, A.M. and Patel, B.R. Succession of insect pests of brinjal in north Gujarat. *Pest Management and Economic Zoology*. 13: 159-161 (2005).
- Bhede, B.V.; Suryawanshi, D.S. and More, D.G. Population dynamics and bioeficacy of newer insecticide against chilli thrips, *Scirtothrips dorsalis* (Hood). *Indian Journal of Entomology*. 70: 223-226 (2008).
- Debaraj, Y. and Singh, T.K. Population dynamics of cabbage aphid *Brevicoryne brassicae* (Linn.) in relation to abiotic and biotic factores at different altitudes of Manipur. *Indian Journal of Entomology*. 66(2): 172-175 (2004).
- Gambhiri, P.C. and Kumar, A. Intensity of infestation, varietal performance control of *Amrasca biguttula biguttula* (Ishida) and *Leucinodes orbonalis* (Guen.) on brinjal. Abstract of National Seminar. pp: 45 (1998).
- Hosmani, M.M. Chilli: Published by Mrs. Sarasikshi M. Hosmani, *Dharwad Publication*. p. 246 (1993).
- Kandasamy, C.; Mohansundaram, P. and Karuppuchamy. Evaluation of insecticides for the control of *Scirtothrips dorsalis* Hood, on chilli (*Capsicum annum* L.). *Madras Agricultural Journal*. **77**: 169-172 (1990).

- Kumar, N.K.K. Yield loss in chilli and sweet pepper due to Scirtothrips dorsalis Hood. Pest management in Horticulture Ecosystem. 1(2): 61-69 (1995).
- Lingeri, M.S.; Awaknavar, J.S.; Lingappa, S. and Kulkarni, K.A. Seasonal occurrence of chilli mites (*Polyphagotarsonemus latus* (Banks) and thrips (*Scirtothrips dorsalis* Hood). *Karnataka Journal Agriculture Science*. 11(2): 380-385 (1998).
- Mahmood, T.; Hussain, S.I.; Khokhar, K.M.; Jeelani, G. and Ahmad, M. Population dynamic of leaf hopper (*Amrasca biguttula biguttula*) on brinjal and effects of abiotic factors on its dynamics. *Asian Journal of Plant Sciences.* 1: 403-404 (2002).
- 12. Montasser, A.A.; Marzouk, A.S.; Hanafy, A.R.I. and Hassan, G.M. Seasonal fluctuation of the broad mite. *Polyphagotarsonemus* latus (Acari: Tarsonemidae) and its predatory mites on cultivars some pepper in Egypt. International Journal of Environmental Science and Engineering. 2: 9-20 (2011).
- Nadaf, A.M. and Kulkarni, K.A. Seasonal incidence of the fruit borers *Helicovarpa* armigera H. and Spodoptera litura F. on chilli in Dharwad. *Karnataka Journal of* Agricultural Sciences. 19: 549-552 (2006).
- 14. Meena, R.S.; Ameta, O.P. and Meena, B.L.Population dynamics of sucking pests and their correlation with weather parameters in chilli, *Capsicum annum L.* crop. *An International Quarterly Journal* of Life Sciences. 8: 177-180 (2013).

Copyright © Nov.-Dec., 2017; IJPAB

- Nelson, S.J. and Natarajan, S. Economic threshold level of thrips in semi - dry chilli. *South Indian Horticulture*. 42: 336-338 (1994).
- Panicker, B. Population dynamics of various species of thrips on different host crops and their chemical control. M.Sc. (Agri.) Thesis. Gujarat Agricultural University, Sardarkrushinagar (2000).
- Roopa, M. and Kumar, A.C.T. Seasonal incidence of pests of capsicum in Bangalore conditions of Karnataka, India.

 1465-1470 (2017)
 ISSN: 2320 - 7051

 Global Journal of Biology, Agriculture
 and Health Sciences.
 3: 203-207 (2014).

- Singh, K.; Raju, S.V.S. and Singh, D.K. Population succession of tomato fruit borer (*Helicoverpa armigera*) on tomato (*Lycopersicon esculentum* Mill.) agroecosystem in eastern region of U. P. *Vegetable Science*. 38: 152-155 (2011).
- Yadav, A.K.; Acharya, V.S.; Kashyap, P.; Meena, V.S. and Singh, S.P. Population dynamics of major sucking pests on chilli and its relationship with weather factors. *Annals of Horticulture*. 7: 103-108 (2014).